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GEODESIC FOLIATIONS BY CIRCLES

A. W. WADSLEY

1. Introduction

Smooth foliations by circles of compact three-manifolds have been com-
pletely analysed by D. B. A. Epstein in the paper [2]. Essentially, he shows
that all such foliations arise as a decomposition of the manifold by the orbits
of a smooth circle action. The theorem of this paper shows that the same is
true of an arbitary smooth manifold, compact or not, with a foliation by circles
satisfying a certain (rather strong) regularity condition.

It is known that not all foliations by circles arise as the orbits of some action
by §'; indeed, the paper [2] presents a foliated noncompact three-manifold as
a counter-example to such a proposition. However, it is an open question
whether or not such examples exist in the case of a foliated compact manifold
of dimension greater than three.

A C" flow on a C” manifold M is a C” action : R X M — M of the additive
reals on M. A C” flow without fixed points, each of whose orbits is compact,
gives rise to a C” foliation of the manifold by circles. Further, any C* foliation
by circles of a manifold M gives rise to a C* flow on (a double cover of) M.
The version of the theorem presented here is stated for flows; an equivalent
version for circle foliations in terms of differential forms is readily obtainable
(see § 2). The theorem is the following.

Theorem. Let p: R X M — M be a CT action (3 <r < o) of the additive
group of real numbers with every orbit a circle, and M a C* manifold. Then
there is a C” action p: §' X M — M with the same orbits as u if and only if
there exists some riemannian metric on M with respect to which the orbits of
p are embedded as totally geodesic submanifolds of M.

Finding some such metric given a circle action on M is easy (see § 3); the
proof of the converse requires a little more effort. The author wishes to thank
David Epstein for his gentle encouragement and for his many helpful sugges-
tions.

2. The invariant one-form

Suppose a riemannian metric exists on the manifold M as in the theorem.
At each point m € M choose a unit vector T,, in the direction of the flow p.
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Then the vector field T satisfies the relations |7)| =1 and F,T = 0 on M,
where F is the Levi-Civita connection of the metric. Without loss of generality
we may assume that the vector field T generates the flow p. That is,
(d/d)yu,(m)|;_, = T, where y,(m) = u(t, m).

Lemma 2.1. Let X ¢ T,,M and suppose that X is orthogonal to T. Then
the vector pnX in the tangent space of M at p = p(m) for t € R is orthogonal
toT,. Thatis, {(uxX,Ty) =0 forallteR.

The proof of the lemma appears at the end of the section.

Thus the flow ¢ maps orthogonal vectors into orthogonal vectors for all time.
Define a one-form & on M by a,(X) =<{X, T, ; then o{T) =1 and L, = 0,
where L, denotes Lie derivative with respect to the vector field 7. This follows
from Lemma 2.1 and the expression (L,a) = lim ((¢,*@),, — ax)/t as t — 0.
In fact, we have a converse: given a vector field ¥ on M and a one-form j
with (Y) =1 and Ly =0 let O, ={XeT,M: X)) =0} and P, =
{XeT,M:X =cY,ce R} Then the tangent bundle of M splits: TM = Q@ P.
Furthermore, a straightforward construction defines a riemannian metric on M
such that ,, is orthogonal to P, at each m ¢ M. The reverse argument to the
proof of Lemma 2.1 (see below) then shows that with respect to this metric
the trajectories of Y are geodesics in M.

In the formula L,a = Cr(da) + d(Cra) where d is the exterior derivative
and C; is contraction by 7, we have d(C,a) = 0, since Cra = a(T) = 1.
Whence Cr(de) = Lra = 0. Conversely, given a one-form 3 and vector field
Y with Cy(dp) = 0 and 5(Y) >0 it is easy to verify that Ly, =0 and f(Y’) =
1 where Y’ = Y /B(Y). We can summarise the above two paragraphs in the
following

Lemma 2.2. Let T be a nonzero vector field on the manifold M. Then
there exists a riemannian metric on M so that the trajectories of T are em-
bedded as totally geodesic submanifolds if and only if there exists a one-form
o on M with Cr(da) = 0 and «(T) > 0.

Such one-forms arise naturally in the study of contact manifolds as defined
by Boothby and Wang [1]. In this case, the manifold M is assumed to have
dimension 2n + 1 with a globally defined one-form w such that w A (dw)™ 3= 0
on M ((dw)" = do A --+ /A dw). On the subspace V, = {X e T,M: Cx(dw)
= 0} we have @ # 0; further, ¥, has dimension one and is complementary
to the subspace of dimension 2n on which w is zero. Let Z_ be that element
of V, for which w(Z,) = 1. Then the vector field Z and one-form  satisfy
the conditions of Lemma 2.2. Thus with a suitable metric on M the trajectories
of Z are geodesics.

Indeed, in their paper [1] Boothby and Wang proved a special case of our
theorem. They consider the case where the manifold M is compact and the
induced foliation of M by the trajectories of Z is regular in the sense of Palais
[6]. That is, about each point x of M there is an open neighborhood U of x
so that any nonempty intersection of a trajectory with U is a connected set.
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In this situation, each trajectory is closed and hence compact; so each orbit
is a circle. They deduce that there is an effective circle action on M with the
same orbits as the R-action generated by Z.

Proof of Lemma 2.1. Suppose X, e T,,M is orthogonal to the flow. Let
V, be a small open disc transverse to the flow through m with cl ¥, compact
(cl = closure), and X,, tangent to V/, at m. Furthermore, assume there are de-
fined on ¥, coordinate functions x?, - - -, x* (n = dim M) with x’(m) = 0 and
(@/0x™),, = X,,. Then there is an ¢ > 0 such that V = u((—e, &) X V) is the
diffeomorphic image of the open set (—e¢,e) X V, under . Moreover, on V
we may define coordinate functions y', ---,y" as follows: for p = p,(q)
(geV,, —e<t<e), set y'(p) =t and y(p) = x%(q), 2 <i < n. Then (5/8y"),
=T, and (3/8y"), = pu(3/3x%),); in particular, if p = g,(m) then 5/3y™), =
1+X,,. Define the vector field X on V by X = §/3y™.

Because our hypotheses imply (i) VT = 0, (i) <7, 7> = 1 and (i) 0 =
[T.X1=V X — V3T, wehave T{X,T) =V X, T)+ (X, V; T>=F X, T
= FyT,T) = $X{T,T» = 0. That is, the inner product <X, T» is constant
along the orbit of T through m. In particular, we have {gu.X,,T> = 0 for
—& < t < e. So p translates vectors orthogonal to the orbits of the flow into
orthogonal vectors. This completes the proof. In general, the flow g need not
be metric-preserving.

3. Necessity

Let M be a riemannian manifold with metric tensor g. A vector field X on
M which generates a one-parameter group of isometries of M with respect to
g is known as a Killing vector field with respect to g. Such a vector field sati-
sfies the condition L yg = 0, where L g is the Lie derivative of the tensor field
g with respect to X.

Lemma 3.1. Let M be a riemannian manifold with metric tensor ¢ and a
nonzero Killing vector field X. Then there exists a metric ¢ on M, conformal
to g, such that X remains a Killing vector field with respect to g’ and, in ad-
dition, we have |X| = 1. Furthermore, with respect to g’ the trajectories of
X are geodesics with parametrisation by are-length.

Proof. Define the function f: M — R by f = (g(X, X))™! = [X[%. We may
define the conformal metric g’ by the tensor g’ = fg. Now Lxf = (g(X, X))?
-Lx(8(X, X)) = (8(X, X)) (Lxg)X, X) = 0, thus Lx(fg) = (Lxf)g + f(Lx8)
= 0 because Lyg = 0 by hypothesis. The flow generated by X is isometric;
in particular, the flow preserves the subspace of vectors orthogonal to X with
respect to g’. It follows from § 2 that the trajectories of X are geodesics with
parametrisation by are-length, as | X| = 1.

Returning to the theorem, suppose we have p: §' X M — M, a smooth action
of the circle group §' without fixed points. Identifying ' = R/Z, we may sup-
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pose p defines a flow with derived vector field T. Choose any metric g”’ on M
and define another metric by

o=@,

where the integral is taken with respect to the invariant Haar measure on §°.
Then g is invariant under the action ¢; that is, T is a Killing vector field with
respect to g. Lemma 3.1 can now be applied to T thus proving necessity in
the theorem.

4, Sufficiency

Suppose that we are given a flow ¢ R X M — M with every orbit a circle,
and that with respect to some riemannian metric on the manifold M the orbits
of u are geodesics. Without loss of generality we may suppose parametrisation
by arc-length. By Lemma 2.1 we see that the flow maps orthogonal vectors
into orthogonal vectors.

Let V, be a small disc in M transverse to the flow, with cl VV, compact. Then
there is an £ > 0 such that p defines a homeomorphism of [—¢,¢] X ¢l V, into
M, which is a diffeomorphism on (—e,¢) X V,. By a flat neighborhood in M
(resp. of a point m in M) shall be meant an open subset V' of M (resp. an open
neighborhood V of m) such that V = ((~¢,¢) X V,) for some disc V, (resp.
for some disc V, with m ¢ V). Let z: V — ¥V, be the projection map.

Lemma 4.1. Let V be a flat neighborhood in M. Let ¢,:[0,1] - V,
0,: [0, 1] — V be smooth curves in V orthogonal to the flow. If rog, = noa,
and g,(0) = 0,(0), then g, = o,.

Proof. A straightforward application of the uniqueness of solutions of or-
dinary differential equations.

Following [2, p. 69], we define i: M — R by the conditions

i. x>0,
i p(x) # x for 0 < r < Ax,
i, py(x) = x .
The function 2 is invariant under the flow.

Proposition 4.2, [2, § 51. The function 1: M — R giving the period of a
point is lower semi-continuous. If W C M, then the set of points of continuity
of 2| W is open in the induced topology on W.

We now use an idea basically due to Montgomery (see [4, p. 224]). We de-
fine the sets B,, B, C M as follows

B, = {x e M: 1 is not continuous at x} ,
B, = {x e B,: 2| B, is not continuous at x} .
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Each of B,, B, is invariant. Furthermore, B, (resp. B,) is closed and has null
interior as a subspace of M (resp. B,). M — B, has a countable number of
connected components each of which is an invariant open subset of M.

Lemma 4.3. Ler U be an open conrected set in M, and f: U — R a con-
tinuous, invariant real-valued map such that y,,(m) = m for allm e U. Then
f is a constant map.

Proof. Fix xeU. Let V = p((—e,e) X V,) be a flat neighborhood of x in
M. Then on V,2> 2. Choose another neighborhood W of x, W =
w((—e,e) X Wy, x e W, C V, such that for y e W we have |fx — fy| < . For
p’ € W, by taking a smaller neighborhood if need be, we may further suppose
that there exists an orthogonal curve ¢: [0, 1] — W with ¢(0) = x and ¢(1) = p,
where p and p’ lie on the same connected component of an orbit in W. Now
00 is orthogonal and its image is contained in W; furthermore, it is easy
to see that x oo = wo (u;, 0¢) where n: W — W is projection. Since ¢(0) = x
= y;,00{0) we may apply Lemma 4.1 to obtain ¢ = y,, og. In particular,
treoo(1) = p;(p) = p. Clearly fp = k,Ap where k, is an integer; similarly,
we have fx = k,Ap. As |fx — fp| < e and Ap > 2¢ we obtain |k, — k,| < %,
which implies k, = k,. Whence fx = fp = fp’. As p’ € W was arbitary and U
is connected, the lemma is proved.

Corollary 4.4. Let U be a connected component of M — B,. Then 2| U =
¢, a constant.

Define C, = {x € M: 2 is unbounded in any neighborhood of x}. C, is a
closed invariant subset of M. Furthermore, we have C, C B, as the function 2
is locally constant on M — B,. In the proof we assume C, is nonempty and
prove a contradiction.

Proposition 4.5. Let D be a connected component of M — C,. If U C D
is a component of M — B, with 2\U = ¢, then 4. |D = id.

Proof. D is an open invariant subset of M. Fix me D and let A € D be
the orbit of x through m. Let V = p((—e, ) X V) be a flat neighborhood of
min D, so 2 > 2¢ on V and cl V, is compact. Because 2 is locally bounded on
D, we may assume that 2 < 4 on V, /4 e R. Additionally, it can be supposed
that the disc ¥V, is sufficiently small to ensure that the orbit 4 intersects V, in
only the single point m. We define the Poincaré map S: V, — V, for some
smaller disc ¥, C V. For more detail the reader is referred to [2,§§4,5].
Essentially, there exists a neighborhood V, of m in V, such that the map
f: V, — R, given by the conditions

i. x>0,
N RERE NI for 0 < ¢ < fx,
. ueV,,

is well-defined and C* on V. The Poincaré map S: V|, — V, is defined by
S. = p.£x). The point m e V is invariant under S. Let N = [A4/(2¢) + 1].
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We define by induction neighborhoods V; of m in ¥, such that SV;,, C V;
(1 < i< N!). Because 4 > 2¢ on the open invariant set orb V', (where orb V', =
{yeM:y=px) for te R, x e V,}) and because 2 < / here, it is easy to show
that for each point x ¢ V,, where ¢ = N!, $’x = xfor some r, 1 <r < N.
Hence $? = id on V,. We obtain an open neighborhood W of m in V, which
is invariant under S by putting W = (2., §*V,. The set orb W C D is invariant,
connected and open in M. Define the function g: W — R by

glx) = ZZJI (foS'x) .

Then g is continuous and invariant under S. Thus it may be extended contin-
uously to a function g on all of orb W, invariant under ¢ and agreeing on W.
Because S? = id on W we have pg,,(x) = x for every x ¢ orb W. By Lemma
4.3, g must be constant on orb W. As the set M — B, is open and dense in M,
some component U of M — B, intersects orb W nontrivially. Let 1| U = c. It
is easy to see that g = kc on W, where k is some integer, and thus g = kc on
orb W. The transformation p.|orb W is periodic and is the identity on the
interior set U orb W. By a theorem of Newman [5], g.|orb W = id. Straight-
forward use of a covering of D by flat neighborhoods and the fact that D is
connected completes the proof of the proposition.

Corollary 4.6. For D as above, p.\cl D = id, and if x € cl D then we have
k.Ax = ¢ where k, > 1 is an integer. Furthermore, pn: T .M — T M is the
identity for each x € cl D.

Corollary 4.7. For D as above we have bdy D = bdy (cl D); that is,
int (c1 D) = D.

1t will be useful to consider the action x on the component D of M — C,,
where p.|D = id as above. Define another metric g7 on M by

g’ =c¢t J: (p,*g)de .

It follows from Corollary 4.6 that on cl D the flow is isometric with respect to
g”. Tt will be convenient to work with the g”’-metric only for the remainder
of the proof.

Since p is isometric on the open set D, it commutes with the exponential
map there. For peM, r > 0set B/(p) = {X e T,M: |X|" < r} and define
B,(p) = exp B)(p). If p ¢ D, then there exists some r > 0 such that B,(p) C D
and B,(p) is the diffeomorphic image of the ball B)(p) in T,M. Thus
1,0 €Xp, | By (p) = exp, o pu| By(p) for g = p,(p) and all time ¢; in particular,
the set B,(p) = p,,B.(p), so that the action of y,, in a neighborhood of p is
linear with respect to geodesic coordinates at p.

It follows from Proposition 4.2 that if m ¢ (B, — B,) N D then there exists
a neighborhood W of m in D such that 2] B, N W is continuous. By choosing
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some smaller neighborhood if necessary, we can suppose 2{B, N W is con-
stant. (Because g./cl D = id and 2 is locally bounded below, we may first
suppose that 1| B, 1 W takes only a finite set of values. Then, since 2 is con-
tinuous on this set, we can easily find a (smaller) neighborhood W’ of m so that
A|B, N W’ is constant.) Suppose Aim = c/k, k > 1 an integer. Then the trans-
formation p,.: T,,M — T,M is such that every vector is either fixed or has
period k. Using the diffeomorphism B,(m) = exp B,(m) it is easy to see that
if X = 1 then A would be continuous at m, whence k& > 2; thus the fixed point
set of T, M (with respect to y,,.) has codimension at least one. Denote this set
by H'(m) and define H(m) = exp,, H'(m). Thus y,,, | H(m) N B,(m) = id and
the only fixed points of B,(m) under the transformation y,, are contained in
B,(m) N H(m). (Note that B,(m) N B, possibly includes points of B,.)

Define C, = {x € C,: 1| C, is continuous at x}. By Proposition 4.2, C, is an
open subset of C, (with respect to the relative topology). Let p e bdy D N C,
where D is some component of M — C,. (bdy D C C, because points of bdy D
are not interior in M — C,.) Then there exists a neighborhood W of p in M
such that 2| W N bdy D is continuous and, as before, we may suppose that 2
Is constant there.

Lemma 4.8. i|bdyD N W =c.

Proof. Most of the work in the proof of this lemma arises because bdy D
need not a priori be a smoothly embedded submanifold of M.

Without loss of generality, the point p is arcwise accessible from D; that
is, there is some (regular) arc lying in D U {p} having p as an endpoint. Such
points are obviously dense in the boundary (see, for example, [4,p. 119]).
With a slight abuse of notation, denote some such arc by [g, p] with [g, p) con-
tained in W N D.

it is well-known that given any compact set A C M there exists an s > 0
such that for each x ¢ A the ball By(x) is convex and such that if the vector
X eT,M,yebdy Bi(x) is tangent to the sphere bdy B,(x) then the geodesic
exp tX does not penetrate the ball B,(x) near y (see, for example, [3, § 9.4]).
Setting A = [g, p] we let s > 0 as above; we may further suppose that
B,(g) < D and that if x e [q, p] then cl By(x) C W. Then there exists some
y € [q, p) such that bdy D N ¢l By(y) + @ and bdy D N cl By(y) C bdy B,(»).
Let z e bdy D N bdy By(y). If X e T,M is tangent to the sphere bdy B,(y) then
the geodesic exp tX lies outside of B,(y) near z; furthermore, if X is not tan-
gent to this sphere, then the geodesic exp tX or exp (—tX), t > 0 penetrates
the ball B,(y) for some positive distance. Note that as the radius s varies over
lesser values such points z will be arbitrary near p, and that ip = 2z.

There are a metric ball B,(z) € W with center z and an a > O such that if
x ¢ B.(2) then the ball B,(x) is convex. Thus the open set B,(z) N B,(y) is con-
vex and contained within D N W. We may distinguish two cases:

1. <z is approximated by points of B, — B, in B,(z) N By(y),

2. case | does not occur.
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Consider case 1. Let m, be an element of B, — B, in B,(z) N B,(y) with
associated fixed-point set H(m,) (see the paragraph following Corollary 4.7).
Recall that the flow, when restricted to D, preserves the metric and conse-
quently maps geodesics into geodesics whilst preserving their parametrisation.
In particular, if g:[0,1] —clD is a geodesic with g(0) = x e bdy D and
g(0, 1] C D, then for each integer k we have 4,0 g:{0, 11— cl D is a geodesic
on (0, 1] and, by continuity, it must be geodesic at p,,, o g(0) = x. Now, if
the set H(m,) N B,(m,) N B,(z) intersects bdy D then it contains an open
subset of bdy D, which is impossible. For otherwise, there is some
webdy D N B,(m,), w ¢ H(m,)) with a geodesic exp tX in B,(m,), X tangent
to M at m,, such that exp#,X = w and exptX e D N B,(m,) for 0 < ¢ <1,
Thus the point exp ¢,X is fixed under the transformation g,,,,. By the definition
of H(m,) we have 1, X e H'(m,) which contradicts the hypothesis that w ¢ H(m,).

Furthermore, H(m,) N cl B,(m,) N B,(z) is closed in B,(z), and is therefore
bounded away from z. Thus we may choose m, e (B, — B,) N (B,(z) N By(y))
strictly nearer z than m, so that m, ¢ H(m,) but m, ¢ B,(m;). (Because B,(m,),
B,(z) are convex and ze B,(m,).) Proceeding inductively, we may find
m; € (B, — B,) N (B,(z) N B(y)) strictly nearer z than m;_, with m, ¢ H(m;),
1 < j<ibut with m; € B,(m;), 1 <j<i. By the definition of H(m,) C B,(m,)
we have Am; # am; for 1 < j<i. But, by hypothesis, 4 is bounded away from
zero in W and B,(z) C W. Moreover, u.|cl D = id. Hence there is only a
‘finite number of values for 2| D N B,(z). In particular, 1] B, N D N B,(z) takes
only finitely many values; but this contradicts the construction of our sequence
{m;}. Thus case 1 cannot occur.

Consider case 2. That is, z is not approximated by points of B, — B, in
B.(z) N By(y). But since B, — B, is open and dense in B,, for some smaller
value of a we also have that B, N (B,(z) N By(»)) = @. Thus B,(z) N B,(y) C U,
where U is some component of M — B, U C D and 2|{U = c¢. By Corollary
4.6, if x e bdy D N W then Ax = kc where k > | is an integer. Consider the
case k£ > 2.

In T,.M denote by F the one-codimensional hyperplane of vectors tangent
to the sphere bdy B,(y). F partitions T.M into two complementary open half-
spaces E- and E* where E* consists of vectors X such that the geodisic exp tX,
t > 0, penetrates the ball B,(y) for some positive distance. Restricting attention
to the ball B,(z), for each vector X ¢ E* and integer j the curve p;,,oexp tX
(for small £>>0) is a geodesic in D ; consequently, x;,, 0 exp tX = exp, o f(gt;;,:X).
Since p.|U = id, each vector X in E* has period k with respect to ,,.: T .M
— T,M. If there is t, > O such that exp 1, X e bdy D N B,(z) where X ¢ E*,
then the vector 7,X would be fixed under g,. (as 2{W N bdy D is constant)
which contradicts the fact that X has period & > 2. Thus exp, maps E* N B/ (z)
diffeomorphically into U C D.

Lemma 4.9. Let V be a vector space with F C V a one-codimensional
hyperplane, and T .V — V a linear transformation of finite period such that
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each point of the open half-spaces E~, E¥ of V determined by F huas least
period (with respect to T) strictly greater thun one. Then the orbit of E* under
successive transformations by T includes E~.

Proof. It is sufficient to show that the orbit of each point v ¢ E~ intersects
E* nontrivially. If none of vT,»T? .-, vT*"' (where k is the period of T)
are in E* then the invariant vector v + 7T + --- + v7T*"'is in E- as well,
but all invariant vectors are contained in F. Thus at least one v77 ¢ E*.

In the case k& > 2 the lemma applies to p;,: T,M — T,M. Thus exp B’ (z) C
cl U and bdy D N B,(z) C cl D. But this contradicts Corollary 4.7, Therefore
k=1,2bdy D N W = ¢ and the proof of Lemma 4.8 is complete.

Let x ¢ C,. There exists a neighborhood W of x in M such that 2| W N C,
is continuous. Furthermore, Lemma 4.8 shows that for each point p e bpy D;
N W, where D; is a component of M — C, with g, |D; = id (as in Proposi-
tion 4.5), we have ip = c¢;. Define the function #: W — R by

hq:{ci ifgecdDNW,
q ifgeWwW N C,.

The function 4 is clearly continuous, and y,,9 = g for all g ¢ W. By Lemma
4.3, h is constant on W, which implies 2 is bounded in a neighborhood of x.
But this contradicts the hypothesis that C, is nonempty, because C, is dense in
C,. Thus 2 is bounded on M. Proposition 4.5 then implies that x has period
¢ on M. Evidently, this proves the theorem.
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